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Some epidemiologic studies suggest an asso-
ciation between pesticide exposure and child-
hood cancer (1,2). Most studies have used
questionnaires to evaluate parental occupa-
tional exposure around the time of the child’s
birth and exposure to the parents or child
from pesticide use in the home and garden.
Such information is potentially limited by
response bias. Childhood cancer has not been
evaluated with respect to potential exposure
to agricultural pesticides because respondents
are unlikely to have specific knowledge about
pesticide use on nearby fields.

Few tools exist for identifying regions
with a high density of agricultural pesticide
use. County crop acreage totals are available,
but land use varies tremendously within
California counties because of differences in
topography and urbanization. Some investiga-
tors have used satellite imagery and a geo-
graphic information system (GIS) to identify
the location of agricultural fields (3,4). These
indices provide information on the popula-
tion living near fields, but only indirect esti-
mates of pesticide use based on crop type.
The resulting pesticide use estimates are lim-
ited by crop misclassification and the assump-
tion that all fields are treated similarly for a
given crop. Some studies of cancer in adults
have been conducted with pesticide use data
summarized at the county level (5–7).
However, the number of residents living near
agricultural fields and the amount of specific

pesticides applied agriculturally in these com-
munities have generally not been available.

In 1992, California accounted for 22% of
all agricultural pesticide use in the United
States (8). There has been some form of pesti-
cide use reporting in California for several
decades, although before 1990 reporting was
limited to applications that were restricted
and required a permit. The California legisla-
ture mandated the Pesticide Use Report
(PUR) system in 1990 (9), legally requiring
growers and applicators to report all commer-
cial agricultural pesticide use. Every month,
written or electronic records of all pesticide
applications are submitted to the county
agricultural commissioners. The California
Department of Pesticide Regulation
(Sacramento) collects the data entered by the
counties and after checking for errors makes
it available to the public annually for a small
fee. Few states have a full pesticide use
reporting system and no other state has been
collecting data since 1990. An important fea-
ture of the PUR data is that they provide the
pounds of active ingredient applied. There
are more than 850 pesticide active ingredi-
ents applied agriculturally in California each
year. Inert ingredients, which might also be
toxic, are not reported. The active ingredi-
ents, which we refer to as pesticides, range
from compounds with no known carcino-
genic potential to substances known to cause
cancer in laboratory animals (10).

The PUR data provide an opportunity
to develop more geographically precise esti-
mates of agricultural pesticide use, which
may be evaluated in conjunction with cancer
incidence rates. California is particularly
suited for such an analysis because it also has
a statewide cancer reporting system. We
focused on potential exposures to children
because the latency period for childhood
cancer is shorter than for adult cancer. For
this statewide analysis, we grouped pesticides
into toxicologic categories and chemical
classes to account for compounds that might
act similarly in the human body or in the
environment. In addition, we prioritized
individual pesticides by weighting the
reported pounds of use by the potential of
the pesticide to cause cancer and the possi-
bility of exposure based on volatilization and
environmental persistence. The geographic
boundaries for which agricultural pesticide
use is reported in California do not match
the census boundaries. We developed GIS
methods to summarize agricultural pesticide
use by census-block group and estimated the
number of children living in the upper 10th
percentile of pesticide use density. Although
we focused on childhood cancer and poten-
tial carcinogens, these methods could be
modified for other health outcomes and
populations.

Methods

PUR data. We used the 1991–1994 PUR
data to coincide with the time period of the
census and cancer incidence data, and because
it represents the first few years of full pesticide
use reporting. The PUR database provides the
active ingredient, quantity applied, acres
treated, crop treated, and date and location
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for all agricultural pesticide applications. The
locations of pesticide applications are reported
using an identifier that represents a section
within the Public Land Survey System
(PLSS). The PLSS is a nationwide survey that
grids the land in each state into approximately
1-square-mile rectangular units called sec-
tions. Some areas of California were not sur-
veyed when California became a state because
of Spanish land grants. We used a version of
the PLSS with the grid lines extended to cover
any areas that were not surveyed (11). We
checked for and deleted from further analysis
applications with reported section identifiers
that did not correspond to a valid section
identifier within the PLSS.

A small percentage of data entry errors
have been reported in the PUR that result in
erroneously large amounts of pounds applied
(12). We developed methods to identify and
correct errors in the quantity of pesticide
applied that could misclassify exposure. We
used the application rate (pounds per acre)
to identify potential reporting errors with
unreasonably high quantities of pesticide
applied. We calculated the mean application
rate for each pesticide using the 1995 PUR
data. We used the 1995 data for quality con-
trol because this was the most recent year
available and had the fewest number of
extremely high application rates. We
assigned each pesticide an estimated maxi-
mum allowable application rate that was at
least 2 standard deviations above its 1995
mean rate. Application rates above the esti-
mated maximum allowable are generally so
large as to be economically unfeasible. An
application in the PUR database was consid-
ered an error if the application rate was
greater than the maximum allowable rate for
that pesticide. We checked these errors in
two counties and found that they were
largely the result of entry errors or illegible
reporting from the growers (13). We recal-
culated the quantity of pesticide applied for
these potentially erroneous applications by
multiplying the acres treated by the maxi-
mum allowable rate.

Pesticide use by groups. We combined
pesticides from the PUR data into four toxi-
cologic groups for our statewide analysis:
probable carcinogens, possible carcinogens,
genotoxic compounds, and reproductive or
developmental toxicants. We identified 73
pesticides for these four groups from all active
ingredients reported to the PUR statewide
from 1991 to 1994 (Table 1). Some individ-
ual pesticides were included in more than one
group. The U.S. Environmental Protection
Agency (EPA) classifies most pesticides
according to their human carcinogenic
potential (10). California banned or severely
restricted the agricultural use of all pesticides
classified as known human carcinogens (class

A) or probable human carcinogens with lim-
ited human evidence (class B1) before 1991.
For the purposes of this study, we created
one toxicologic group with 19 pesticides
classified as probable human carcinogens
with sufficient evidence in laboratory ani-
mals (class B2). We formed a second group
with 37 compounds categorized as possible
human carcinogens with limited evidence in
animals (class C). 

Some pesticides are not classified as car-
cinogens but have evidence of other types of
toxicity that may be relevant. Genotoxic
chemicals have demonstrated the ability to
directly damage DNA. Several laboratory tests
are commonly used to assess genetic toxicity,
including gene mutation, chromosome aber-
ration, sister chromatid exchange, and DNA
damage. We chose 27 pesticides with at least
two positive results in genetic toxicity assays
for a third toxicologic group (14,15). Because
many childhood cancer cases occur shortly
after birth and may be related to perinatal
exposures, reproductive and developmental
toxicants were also of interest. We selected 19
pesticides with at least one positive result in
reproductive or developmental studies con-
ducted in laboratory animals to form a final
group for analysis (16).

We combined pesticides into four addi-
tional groups based on chemical class
(organochlorides, organophosphates, carba-
mates, and dithiocarbamates). We identified
chemical classes using a pesticide dictionary
and chemical structure (17). There were 36
pesticides with reported use between 1991 and
1994 in these four classes. Organochloride
insecticides had mostly been replaced by
organophosphates by 1990, so these repre-
sent the smallest and largest groups, respec-
tively. Table 1 provides a list of pesticides in
each chemical class.

Pesticide cancer hazard prioritization.
Although some low-use pesticides may be
highly toxic, for an epidemiologic study a
minimum amount of use is required to pro-
vide enough power to detect a risk.
Therefore, we determined a minimum
annual average use based on the land area of
California, which is approximately 150,000
square miles. We considered average
statewide use greater than one pound per
square mile to be significant, and chose
150,000 pounds as a minimum annual aver-
age statewide use for consideration in this
analysis. Thirty-eight pesticides from the
toxicologic groups met this minimum
annual use.
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Table 1. Pesticides with reported use in California, 1991–1994, in toxicologic and chemical groups.

Toxicologic and chemical groups Pesticides

Probable carcinogens (class B2)a Alachlor, cacodylic acid, captan, chlordane, chlorothalonil, 
daminozide, 1,3-dichloropropene, iprodione, lindane, mancozeb, 
maneb, metam sodium, orthophenylphenol, oxythioquinox, 
propargite, propoxur, pentachlorophenol, propyzamide, 
vinclozolin

Possible carcinogens (class C)b Acephate, acrolein, amitraz, atrazine, benomyl, bifenthrin, 
bromacil, bromoxynil, carbaryl, chlorthal-dimethyl, cyanazine, 
cypermethrin, dichlobenil, dichlorvos, dicloflop-methyl, dicofol, 
dimethoate, ethalfluralin, fosetyl-al, hydrogen cyanamide, 
imazalil, linuron, methidathion, metolachlor, molinate, 
norflurazon, oryzalin, oxadiazon, oxyfluorfen, pendimethalin, 
permethrin, phosmet, phosphamidon, piperonyl butoxide, 
simazine, triadimefon, trifluralin

Genotoxic compoundsc 2,4-Diethylamine, acephate, alachlor, aldicarb, atrazine, 
benomyl, captan, carbaryl, carbofuran, chlordane, 
chloropicrin, chlorothalonil, chlorpyrifos, diazinon, 
1,3-dichloropropene, diquat dibromide, malathion, 
metam sodium, methyl bromide, methyl parathion, mevinphos,
orthophenylphenol, oxydemeton, methyl, paraquat dichloride, 
pentachlorophenol, trifluralin, ziram

Developmental or reproductive toxicantsd 2,4-Diethylamine, benomyl, bromoxynil, carbofuran, cyanazine, 
diazinon, diquat dibromide, s-ethyl dipropylthiocarbamate 
(EPTC), mancozeb, maneb, metam sodium, methyl bromide, 
methyl parathion, oxyfluorfen, propargite, s,s,s-tributyl, 
triadimefon, vinclozolin

Organochloridese Dicofol, endosulfan, lindane
Organophosphatese Acephate, azinphos-methyl, chlorpyrifos, diazinon, dimethoate, 

disulfoton, ethoprop, fonofos, malathion, methamidophos, 
methidathion, methyl parathion, mevinphos, naled, 
oxydemeton-methyl, parathion, phorate, phosmet, profenofos

Carbamatese Aldicarb, benomyl, carbaryl, carbofuran, frometanate, 
methomyl, pebulate, propoxur

Dithiocarbamatese Mancozeb, maneb, metam sodium, thiram, zineb, ziram
aProbable human carcinogens with sufficient evidence in laboratory animals and inadequate or no evidence in humans
(10). bPossible human carcinogens with limited evidence in laboratory animals (10). cPositive in two or more laboratory
assays (14,15). dPositive in one or more developmental or reproductive studies in laboratory animals (16). eChemical
groups were identified from Meister (17).



To prioritize individual pesticides for
analysis, we developed a hazard weighting
system based on two measures of carcino-
genic potential and two measures of expo-
sure potential. We assigned weights for each
of these attributes to the highest-use pesti-
cides from the toxicologic groups. The U.S.
EPA cancer class was used to assign to each
pesticide a weight from 1 through 10 based
on the evidence that it is a carcinogen (10).
Since there were no class A or class B1 car-
cinogens with geographically referenced use
during our study period, the highest score
assigned for cancer class was 7. Cancer slope
factors, which estimate cancer potency from
the dose–response relationship, have been
calculated for all probable (class B2) and
most possible (class C) carcinogens (10). As
a second measure of carcinogenic potential,
we assigned each pesticide a weight from 1
to 10 based on its cancer potency. If data
were not available, a default weight of 1 was
assigned to the pesticide for that attribute.
Table 2 provides a key to the weights for
each attribute.

We used volatilization flux rate and field
half-life as measures of physical characteris-
tics that could be associated with exposure
potential. Volatilization flux estimates the
tendency of a pesticide to move into the air
after application and is correlated with the
downwind concentration in air (18). We
estimated the volatilization flux for each pes-
ticide using the vapor pressure, water solu-
bility, and soil absorption coefficient
(19,20). Pesticides were assigned a weight
from 1 through 10 based on the calculated
volatilization flux. We used the field dissipa-
tion half-life—a measure of the overall rate
of disappearance of a pesticide from treated
fields—as an indicator of persistence (20).
Pesticides were assigned a weight from 1
through 5 based on persistence. The range
used for persistence weight was half that
used for volatilization flux weight because
the dose received by children from ingestion
of household dust is estimated to be about
half the dose from inhalation for most pesti-
cides (21,22). Moreover, we considered

volatilization and secondary drift a necessary
precursor for most potential exposures to
children in nearby communities. 

We calculated the cancer hazard factor for
each pesticide by multiplying the weights for
each attribute and then normalizing to make
the highest possible score 10. The range of
potential cancer hazard factors covers almost
four orders of magnitude (0.002 to 10):

Cancer Hazard Factor = 
(Class × Potency × Flux × Persistence)/500.

We calculated hazard-adjusted pesticide use
by multiplying the pounds applied by the cor-
responding cancer hazard factor. Individual
pesticides were ranked by hazard adjusted use:

Hazard Adjusted Pesticide Use =
Cancer Hazard Factor × Pounds of Use.

Block-group exposure assessment. We used
the 1991–1994 PUR data to calculate the
annual average pesticide use in pounds for
each square-mile section (23). We used the
annual average because our focus was on can-
cer and chronic exposure. We used a GIS to
determine the spatial relationship between
sections and census-block groups. In 1990,
California block groups had a median land
area of 0.2 square miles and a huge range,
from 0.001 to 3,610 square miles (24).
Pesticide use was allocated from the section to
each corresponding block group on the basis
of percent area of the section in that block
group. We calculated pesticide use density in
pounds per square mile of census-block group
by summing the average pounds applied in all
relevant sections and then dividing by the
block-group area. The median, 90th per-
centile, and maximum block-group pesticide
use density were determined for each pesticide
and pesticide group. We used 1990 census
data to obtain the number of children under
15 years of age by block group. The number
of children living in block groups with pesti-
cide use density above the 90th percentile was
calculated for each pesticide group and the
highest cancer hazard ranking pesticides. 

Results
PUR data. For all pesticides reported in the
PUR, the annual average agricultural pesti-
cide use for 1991–1994 was greater than
169 million pounds. Correcting for applica-
tion rates above the estimated maximum
allowable rate reduced the average by 5% to
160 million pounds. Application rate errors
were often an order of magnitude greater
than the average rate, indicating data entry
errors. Location errors further reduced
statewide annual average pesticide use by
another million pounds or less than 1%.
The most frequent location error involved
sections that were not within the reported
county. Location errors occurred in more
than 1,000 sections (0.5%) and affected a
smaller number of pounds than high appli-
cation rate errors. Given the size of the PUR
database, we considered the observed error
rate of approximately 6% of reported
pounds relatively low.

Pesticide use by groups. The statewide
average annual use for the pesticide groups is
shown in Table 3. The probable and possi-
ble carcinogen groups each had about 10
million pounds per year of reported use, and
the genotoxic and developmental/reproduc-
tive toxicant groups were both greater than
30 million pounds per year. Among the
chemical classes, organochloride insecticides
had the least use with less than 1 million
pounds per year, and the dithiocarbamate
fungicides had the most use with greater
than 10 million pounds per year.

To evaluate changes in pesticide use
from 1991 to 1994, we graphed annual
reported use for probable carcinogens, possi-
ble carcinogens, methyl bromide, and
metam sodium (Figure 1). We chose methyl
bromide and metam sodium because these
were the highest use pesticides from the four
toxicologic groups. The use of probable car-
cinogens (class B) increased from 8 to 16
million pounds from 1991 to 1994. Most of
that increase was caused by metam sodium
use, which grew from approximately 5 mil-
lion to 11 million pounds. The largest
increase occurred between 1991 and 1992,
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Table 2. Pesticide cancer hazard weights by attribute.

Cancer Cancer potencya Volatilization Field half-lifec

Weight classa (mg/kg/day) fluxb,c (days)

10 A > 1 > 10–1 —
8 B1 > 0.1–1 >10–3–10–1 —
7 B2 — — —
5 C > 0.01–0.1 >10–5–10–3 > 100
4 — — — 76–100
3 G or D/Rd 0.001–0.01 10–7–10–5 51–75
2 — — — 26–50
1 NA < 0.001 or NA < 10–7 or NA < 25 or NA

NA, not available. 
aFrom U.S. EPA (10). bFlux rate = vapor pressure/(water solubility × soil absorption coefficient) from Glotfelty et al. (19).
cVapor pressure, water solubility, soil absorption, and field half-life from U.S. Department of Agriculture (20). dGenotoxic
or developmental/reproductive toxicant (16). 

Table 3. Average annual pesticide use in
California from 1991 to 1994 for pesticide groups.a

Average
Pesticide group poundsb

Class B carcinogens 12,643,173
Class C carcinogens 9,972,335
Genotoxic compounds 36,445,168
Developmental/reproductive toxicants 31,472,459
Organochlorides 903,550
Organophosphates 6,687,806
Carbamates 2,326,545
Dithiocarbamates 10,884,652
aIndividual pesticides can be in more than one group.
bPUR data corrected for erroneously high application
rates and includes only valid geographic locations.



which may reflect increased awareness of the
legal mandate of reporting (12). This time
period also coincides with severe restrictions
on the use of 1,3-dichloropropene (Telone),
a fumigant that was largely replaced by
metam sodium. The use of possible carcino-
gens (class C) and methyl bromide remained
relatively constant. 

Pesticide cancer hazard prioritization.
The calculated cancer hazard factors for indi-
vidual pesticides (Table 4) ranged over more
than two orders of magnitude, although
most pesticides had hazard factors between
0.1 and 1.0. For pesticides classified as prob-
able or possible carcinogens, the cancer haz-
ard weights are greater than the exposure
potential weights because of the lesser
weighting for persistence. The cancer hazard
factors for pesticides from the other toxico-
logic groups were more influenced by their
exposure potential. 

The relative ranking of pesticide use
changed significantly when pounds were
adjusted by the cancer hazard factors. The
top pesticides in the state ranked by hazard-
adjusted use (Table 5) were propargite,
methyl bromide, and trifluralin. The top
pesticides from the toxicologic groups
ranked by pounds alone were methyl bro-
mide, metam sodium, and chlorpyrifos.
Propargite had a larger cancer hazard factor
than some high-use pesticides, such as chlor-
pyrifos, producing a much higher ranking by
hazard-adjusted use.

Block-group exposure assessment. We cal-
culated the statewide distribution of pesticide
use density among block groups with more
than 1 pound per square mile of use for a
given pesticide group or individual pesticide
(Table 6). Very low pesticide use densities
may have been the result of location errors
within counties that could not be eliminated.
Therefore, we considered block groups with
use densities less than 1 pound per square
mile to have little potential exposure. There
were 3,000–9,000 census-block groups in the
state with more than 1 pound per square
mile of pesticide use for each pesticide group.
The median densities were generally greater
than 10 pounds per square mile. The distrib-
utions were not normal with order-of-magni-
tude increases between the median, 90th
percentile, and maximum use densities. The
90th percentile of use density was around
500 pounds per square mile for the two car-
cinogen groups and greater than 1,500
pounds per square mile for the genotoxic and
developmental or reproductive toxicant
groups. Among the chemical classes,
organochlorides had the lowest use density
and dithiocarbamates had the highest, with a
median of 30 pounds per square mile.

For individual pesticides, the number of
block groups with more than 1 pound per
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Figure 1. Annual agricultural pesticide use in California from 1991 to 1994. Metam sodium is included
among Class B carcinogens. PUR data corrected for erroneously high application rates and includes only
valid geographic locations.
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Table 4. Cancer hazard weights and factors for pesticides in toxicologic groups with annual use > 150,000
pounds per year.

Cancer Cancer Volatilization Field Cancer
class potency flux half-life hazard

Pesticide weight weight weight weight factora

Probable carcinogens
Captan 7 3 5 1 0.210
Chlorothalonil 7 3 8 2 0.672
Iprodione 7 5 5 1 0.350
Mancozeb 7 5 1 2 0.140
Maneb 7 5 1 2 0.140
Metam sodium 7 8 1 1 0.112
Propargite 7 5 5 4 1.400

Possible carcinogens
Acephate 5 5 3 1 0.150
Carbaryl 5 5 5 1 0.250
Chlorthal-dimethyl 5 3 8 3 0.720
Cyanazine 5 10 3 2 0.600
Dicofol 5 8 5 3 1.200
Dimethoate 5 1b 5 1 0.050
Fosetyl-al 5 1b 1 1 0.010
Methidathion 5 1b 8 1 0.080
Metolachlor 5 1b 8 5 0.400
Molinate 5 8 10 1 0.800
Norflurazon 5 1b 5 5 0.250
Oryzalin 5 8 5 1 0.400
Oxyfluorfen 5 8 5 2 0.800
Pendimethalin 5 1b 8 5 0.400
Permethrin 5 5 5 2 0.500
Phosmet 5 1b 5 1 0.050
Simazine 5 8 5 4 1.600
Trifluralin 5 3 10 4 1.200

Genotoxic or developmental/
reproductive toxicants
2,4-Diethylamine 3 1b 5 2 0.060
Aldicarb 3 1b 5 2 0.060
Carbofuran 3 1b 5 2 0.060
Chloropicrin 3 1b 10 1 0.060
Chlorpyrifos 3 1b 8 2 0.096
Diazinon 3 1b 5 1 0.030
Ethyl dipropylthiocarbamate 3 1b 10 1 0.060
Malathion 3 1b 5 1 0.030
Methyl bromide 3 1b 10 2 0.120
Mevinphos 3 1b 5 1 0.030
Paraquat dichloride 3 1b 1 5 0.030
S,S,S-tributyl 3 1b 5 2 0.060
Ziram 3 1b 5 2 0.060

aCancer hazard factor = (evidence weight × potency weight × flux weight × persistence weight)/500. bNot available. 



square mile of use varied tremendously from
194 for molinate to > 3,400 for methyl bro-
mide. The 90th percentile of use density was
greater than 100 pounds per square mile for
most individual pesticides. The soil fumigants
methyl bromide and metam sodium had
much higher use densities than the other indi-
vidual pesticides with 90th percentile values
greater than 1,500 pounds per square mile.

To illustrate the methods used to calculate
block-group pesticide use density, an example
is provided from Fresno, California. Figure
2A shows probable carcinogenic pesticide use
in pounds by section and Figure 2B shows the
resulting use density in pounds per square
mile for census-block groups in this area. The

block-group pesticide use density essentially
follows the section-level pesticide use. Figure
2B also illustrates that larger, rural block
groups tend to have the highest pesticide use
density and smaller, urban block groups the
lowest. In high-use rural areas, census-
block–group mapping is less geographically
specific than mapping by section because of
the large area of these block groups.

We mapped the geographic distribution
of pesticide use density by block group using
the percentiles of the statewide distribution
for all probable carcinogens (Figure 3) and
for propargite, which was the highest-rank-
ing individual compound (Figure 4). For
probable carcinogens, the highest use areas

were in the San Joaquin, Sacramento,
Salinas, and Imperial Valleys. This corre-
sponds well with the heaviest agricultural
counties in the state based on farm revenues
(25). Propargite use was not as geographi-
cally widespread, and the high-use density
area was primarily the San Joaquin Valley.

More than 6.6 million children under 15
years of age lived in California in 1990. The
number of children living in block groups
above the 90th percentile of use density
varied considerably among the pesticide
groups and individual pesticides (Table 6).
Developmental or reproductive toxicants had
the most children with nearly 267,000, and
molinate had the least number of children
with just over 3,300. Organophosphates and
organochlorides had about 200,000 and
60,000 children living in these high-use
block groups, respectively. The variation in
the number of children living in these block
groups demonstrates that different popula-
tions were potentially exposed for each group
and individual pesticide.

Discussion

We developed methods to quantify agricul-
tural pesticide use density for census-block
groups using the PUR data and a GIS. In
California, there was a wide range of pesticide
use density (Table 6). Most block groups in
the state (57–99%) averaged less than 1
pound per square mile of average annual use
(1991–1994) for pesticide groups and indi-
vidual pesticides. However, at the high end of
the distribution (> 90th percentile), pesticide
use density often exceeded 1,000 pounds per
square mile. More than 100,000 children
lived in these high-use density block groups
for most pesticide groups and about 50,000
children for individual pesticides.

The interrelationship of agricultural pes-
ticide use, individual environmental expo-
sure, and health effects has not been well
defined. The limited environmental and bio-
logic monitoring data available suggest that
residents may be exposed to pesticides
applied agriculturally through multiple
routes. Researchers have detected pesticides
in ambient air near agricultural fields in
California and throughout the United States
(26–28). Dermal contact and ingestion of
household dust are important exposure
routes for young children (29–33). Well
monitoring has also identified pesticides in
the groundwater of agricultural communities
in the state (34). Biologic monitoring of pes-
ticide levels in children indicated an inverse
relationship with distance from treated
orchards (35,36).

These findings suggest that the hundreds
of thousands of children living in areas with
high agricultural pesticide use have a greater
potential for exposure than their more urban
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Table 5. Highest-ranking pesticides based on hazard-adjusted use, 1991–1994.

Cancer Corrected Hazard-
Pesticide hazard factor poundsa adjusted useb

Propargite 1.400 1,600,982 2,241,375
Methyl bromide 0.120 16,901,451 2,028,174
Trifluralin 1.200 1,230,218 1,476,262
Simazine 1.600 869,962 1,391,939
Molinate 0.800 1,380,424 1,104,339
Metam sodium 0.112 8,300,569 929,664
Dicofol 1.200 554,077 664,892
Chlorothalonil 0.672 786,572 528,576
Chlorthal-dimethyl 0.720 642,891 462,882
Oxyfluorfen 0.800 334,325 267,460
Oryzalin 0.400 667,445 266,978
Cyanazine 0.600 411,331 246,799
Chlorpyrifos 0.096 2,429,610 233,243
Carbaryl 0.250 820,487 205,122
Iprodione 0.350 408,562 142,997
Chloropicrin 0.060 2,364,831 141,890
Pendimethalin 0.400 284,845 113,938
Permethrin 0.500 201,795 100,898
Ziram 0.060 1,590,812 95,449
Captan 0.210 417,612 87,699
aPUR data corrected for erroneously high application rates. bHazard adjusted use = corrected pounds × cancer hazard
factor.

Table 6. Distribution of annual average agricultural pesticide-use density in California census-block
groups for toxicologic groups, chemical groups, and high-hazard individual pesticides.a

90th Children
Block Median percentile Max (< 15 years)

groupsb (lbs/mi2) (lbs/mi2) (lbs/mi2) in 90th percentilec

Toxicologic groups
Class B 4,932 31 569 14,935 169,884
Class C 6,218 23 445 5,043 198,375
Genotoxic 7,505 48 1,844 70,670 261,333
Developmental/reproductive 6,647 45 1,789 48,784 266,960

Chemical groups
Organochlorides 3,881 9 86 589 60,909
Organophosphates 9,268 18 349 7,129 204,144
Carbamates 6,755 14 141 1,706 139,316
Dithiocarbamates 3,216 30 764 14,931 109,474

Individual pesticides
Propargite 2,144 21 172 926 61,892
Methyl bromide 3,431 163 2,668 45,185 127,562
Trifluralin 1,287 14 118 784 35,983
Simazine 2,109 15 112 582 64,462
Molinate 194 49 696 1,433 3,334
Metam sodium 1,072 86 1,503 14,480 42,145
Dicofol 1,342 7 72 352 44,902
Chlorothalonil 2,359 13 109 2,537 84,740

aCalculated from census-block groups with use density > 1 lb/mi2 for that pesticide. bNumber of block groups with > 1
lb/mi2 use density for that pesticide; total block groups used in this analysis were 21,443. cNumber of children under 15
years of age living in census-block groups above the 90th percentile of pesticide-use density. 



counterparts. Population growth in California
has led to the development of suburban areas
adjacent to fields or on former farmland,
increasing the potentially exposed population.
We consider pesticide use density an indicator
for a wide range of potential exposure path-
ways, including inhalation of ambient air, soil
drift and persistence in household dust,
potential groundwater contamination,
parental occupational “take home” exposures,
playing in fields, and eating produce directly
from treated fields.

Hazard-weighted pesticide use created
different priorities for assessing individual
compounds (Table 5). Our focus was on
ranking carcinogens for a childhood cancer
study, but these hazard-weighting methods
could be modified for other health outcomes
of interest (37,38). A hazard scoring system
used by the Department of Pesticide
Regulation to evaluate pesticides as toxic air
contaminants also ranked propargite,
simazine, chlorothalonil, molinate, metam
sodium, cyanazine, and chlorpyrifos among
the top 20 compounds (39). Methyl bro-
mide, trifluralin, carbaryl, and captan are
already classified as toxic air contaminants in
California pursuant to section 14021(b) of
the Food and Agricultural Code (39).
Nonoccupational exposures to molinate are
suggested to exceed safety margins (40).
Methyl bromide, chlorothalonil, and moli-
nate have been detected in ambient air of
agricultural communities in California (27).
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Figure 2. Annual average class B pesticide use, in pounds per square mile, around Fresno, California, as
reported to (A) a section of the public land survey system, and (B) a census-block group, 1991–1994.

Figure 3. Annual average class B pesticide use density in California census-
block groups, 1991–1994, in pounds per square mile.

Figure 4. Annual average propargite use density in California census-block
groups, 1991–1994, in pounds per square mile.
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There are some notable limitations to
weighting pesticide use by cancer hazard.
Pesticides that have not been toxicologically
tested for carcinogenicity, genotoxicity, or
developmental/reproductive toxicity were
not included in our prioritization. Eleven
pesticides with more than 1 million pounds
per year of use in California had insuffi-
cient toxicologic and environmental data
for hazard weighting (sulfur, petroleum oil,
sodium chlorate, copper hydroxide, mineral
oil, copper sulfate, chloropicrin, petroleum
distil lates, sulfuryl fluoride, calcium
hydroxide, and diuron). Furthermore, the
weighting of each hazard attribute and
exposure relative to carcinogenicity may not
reflect true environmental and biologic
activity. Animal cancer potency may not
accurately reflect the potency for humans,
although the evidence is fairly convincing
that human carcinogens are carcinogenic in
rodents (41). Some pesticides degrade into
compounds that have more or less carcino-
genic or exposure potential than the origi-
nal parent compound. For example, the
actual fumigant action of metam sodium (a
probable carcinogen) comes from a reaction
product called methyl isothiocyanate,
which is not thought to be a carcinogen.
Information on the environmental break-
down products of pesticide active ingredi-
ents was not included in our prioritization
system because data were not available for
most pesticides.

The PUR system has some limitations
that are potentially problematic for epidemi-
ologic studies. Information on residential
pesticide use in the home and garden is not
collected. Agricultural pesticide use is
reported to a square-mile section, but air
monitoring data from application sites
suggest that pesticide concentrations may
decrease significantly within a mile
(18,42–44). Nonagricultural pesticide appli-
cations, including structural fumigations and
landscaping uses on golf courses and along
highways, are reported only at the county
level in the PUR data. Improved spatial
resolution for both agricultural and struc-
tural/landscaping applications would repre-
sent a significant refinement to the PUR
system for use in health studies. The PUR
system is legally mandated, but pesticide use
is self-reported, and underreporting has not
been evaluated. Information on the type and
amount of inert ingredients applied is not
provided. Many of the solvents used in pesti-
cide formulations also have toxicologic
effects of concern (45,46). Despite these
limitations, the PUR system is still probably
the most comprehensive agricultural pesti-
cide use database in the world (12).

We calculated the annual average pesti-
cide use density to examine chronic exposure.

However, pesticide applications are fre-
quently seasonal, and many are applied only
once per year or in response to specific pest
infestations. If the PUR data are to be used
for studies of other health outcomes, the rele-
vant time period should be considered.
Because of the geographic resolution of the
PUR data, we assumed that pesticide use was
distributed evenly within a square-mile sec-
tion. Pesticide use density represents pesticide
use averaged over the entire land area of the
block group, but all applications could have
occurred in a single section. 

The PUR data represent an extremely
valuable resource for conducting health stud-
ies. Residents are unlikely to have knowledge
about pesticide use on nearby fields, unlike
home and garden use. The measures pre-
sented here are based on independent report-
ing and do not rely on recall by study
participants. The PUR data also allowed for
evaluation of specific pesticide active ingredi-
ents and the combination of pesticides with
similar chemical or toxicologic properties.
For other health studies, pesticide groups
should be tailored to the health outcomes or
exposure pathways of interest. A GIS was
essential in conducting this analysis because
it allowed for the spatial overlay of agricul-
tural pesticide use and census-block groups. 

The heavy use of potentially toxic agri-
cultural pesticides in some areas of California
warrants further exposure and epidemiologic
investigation. Environmental and biologic
monitoring is needed to determine the rela-
tionship between agricultural pesticide use
and individual exposure. Additional toxico-
logic data are also desirable for many high-
use pesticides. The range of values reported
here for census-block group pesticide use
density are suitable for a statewide epidemio-
logic study of childhood cancer. The number
of children living in both high and low pesti-
cide-use density areas is sufficient to allow for
statistical testing between these groups (47).
The pesticide-use density methods presented
here can be used, with some minor modifica-
tions, in other health studies conducted at
the block-group level in California or in
other states if pesticide use reporting systems
are developed. 
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